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Abstract

For effective application of electrospinning and electrospun fibrous meshes in wound dressing, we have in situ
electrospun poly(vinyl pyrrolidone)/iodine (PVP/I), PVP/poly(vinyl pyrrolidone)-iodine (PVPI) complex, and poly(vinyl
butyral) (PVB)/PVPI solutions into fibrous membranes by a handheld electrospinning apparatus. The morphologies of
the electrospun fibers were examined by SEM, and the hydrophobicity, gas permeability, and antibacterial properties of
the as-spun meshes were also investigated. The flexibility and feasibility of in situ electrospinning PVP/I, PVP/PVPI, and
PVB/PVPI membranes, as well as the excellent gas permeabilities and antibacterial properties of the as-spun meshes,
promised their potential applications in wound healing.
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Background
Thanks to the advantages of easy large-scale production,
huge surface-area-to-volume ratio, high porosity, and tun-
able inner structures [1–4], electrospun fibrous meshes
have attracted a lot of interests in various fields such as fil-
tration [5, 6], medical care [7–12], and energy [13, 14].
Electrospun fibrous membranes are suitable for wound
dressing due to their nanoscale structures which mimic
the collagen fibrils of the native extracellular matrix and
human organs [9, 11], and then, the as-spun meshes can
not only physically protect the wound from contaminants
and infections, but also provide an ideal environment for
skin regeneration through maintaining an adequate
exchange of gases, as well as promoting hemostasis phase
and avoiding scar induction [9, 11, 12].
Among the thousands of suitable electrospun materials,

poly(vinyl pyrrolidone) (PVP) and poly(vinyl butyral) (PVB)
are two important polymers for their excellent biocompati-
bility, nontoxicity, good solubility in alcohol, and so on
[15–18]. Consequently, the as-spun PVP and PVB fibrous
materials have been popularly applied for wound dressing

[18–20]. Moreover, PVP in combination with iodine forms
a complex called PVP-iodine (PVPI) and has been a highly
efficient and widely used disinfectant for its small stimula-
tion, low toxicity, light pollution, broad-spectrum bacteri-
cidal effect, and nonresistance of the microorganisms for
even longtime using [21–24]. Nevertheless, PVPI is not rec-
ommended for long-term use or for complex wounds [25].
Electrospun PVP-I-based fibers may be a helpful solution
and have been reported by several groups [26–33]. Ignatova
et al. had prepared PVPI or poly(ethylene oxide) (PEO)/
PVP-I fibers by directly electrospinning PVPI or PEO/
PVP-I solutions or by crosslinking PVP and PEO/PVP mats
and treating them with iodine vapor or iodine solution [26].
Wang had fabricated PVPI nanofibers by electrospinning
PVP, iodine, and absolute ethanol solutions, and the
characterization of as-spun fibers from infrared spectra,
Raman spectra, and X-ray diffraction ensures the formation
of PVPI complex [27]. Uslu et al. have reported series of
PVPI-based electrospun fibers such as poly(vinyl alcohol)
(PVA)/PVPI [28], PVA/PVPI/poly(ethylene glycol) (PEG)
fibers containing (hydroxypropyl)methyl cellulose (HPMC)
and aloe vera [29], PVA/PVPI nanofibers with additional
chitosan and poloxamer 188 [30], and PVA/poly(acrylic
acid) (PAA)/PVPI fibers [31]. All these PVPI fibers were
known to show potential applications in wound dressing,
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however, mostly focused on the morphologies and thermal
stability of the as-spun fibers/meshes. Hong et al. have
reported PLLA/PVPI/TiO2 multicomponent ultrathin
fibrous nonwovens by electrospinning and iodine vapor
treatment [32]. It was found that the existence of PVPI
endowed the nonwoven with water absorbability, anti-
microbial activity, adhesive ability, and transformable
characteristic from hydrophilicity to non-hydrophilicity.
Sebe et al. have prepared PVP/poly(vinylpyrrolidone-viny-
lacetate)/iodine nanofibers with different polymer ratios
by a high-speed rotary spinning technique. Except for the
detailed morphological analysis, the supramolecular struc-
ture and antimicrobial activity of the obtained mats were
also investigated, which suggested the potential applica-
tions in wound dressing [33]. However, for practical appli-
cations, these PVPI electrospun fibers can only be
fabricated based on predesigned models and then im-
planted onto the patient wound, which may lead to the

second injuries to the wound. In situ electrospinning
might solve this problem.
In this paper, we have in situ electrospun iodine-based

PVP and PVB solutions into fibrous meshes by a hand-held
portable electrospinning apparatus. The morphology,
hydrophobicity, gas permeability, and antibacterial property
of the as-spun meshes were examined. Moreover, the ef-
fects of iodine concentrations on these properties were also
investigated. Furthermore, the flexibility and feasibility
of in situ electrospun iodine-based fibrous mats were
presented, and then, the application for wound dress-
ing can be expected.

Methods/Experimental
Materials
Polyvinylpyrrolidone (PVP, 250 kDa, Sinopharm Chem-
ical Reagent Co., Ltd., China) was dissolved in ethanol
(Sinopharm Chemical Reagent Co., Ltd., China) at

Fig. 1 The handheld electrospinning apparatus (a) and the in situ electrospinning process (b). The electrospinning jets can be seen from the spinneret (c)

Fig. 2 SEM images of the as-spun PVP/I (a1–a4), PVP/PVPI (b1–b4), PVB/PVPI (c1–c4) fibers with I or PVPI concentrations of 0%, 1%, 2%, and
5%, respectively
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13 wt%. Poly(vinyl butyral) (PVB) (100 kDa, Sinopharm
Chemical Reagent Co., Ltd., China) was dissolved in
ethyl alcohol at 10 wt%. Iodine (Analytical reagent,
Sinopharm Chemical Reagent Co., Ltd., China) was
added into PVP/ethanol solutions at concentration of
1 wt%, 2 wt%, and 5 wt%, respectively. Poly(vinylpyrroli-
done)-iodine complex (PVPI, Sinopharm Chemical Re-
agent Co., Ltd., China) was dissolved in the PVP/ethanol
and PVB/ethanol solutions at 1 wt%, 2 wt%, and 5 wt%,
respectively. The complex solutions were agitated at
room temperature under constant stirring for at least
24 h before electrospinning. Modified simulated body
fluid (SBF) was purchased from Sinopharm Chemical
Reagent Co., Ltd., China.

Electrospinning Process
The prepared solutions were placed into a 5-mL syringe
equipped with a nozzle with a diameter of 0.1 mm, and
then loaded into the hand-held portable electrospinning
apparatus (HHE-1, Qingdao Junada Technology Co.,
Ltd), as shown in Fig. 1a. The high voltage of this device
is about 10 kV fixed [34, 35]. During the in situ electro-
spinning process, one can firstly operate the device and
then press the syringe by a finger. The as-spun fibers
can be fabricated and then deposited onto the collector,
as suggested in Fig. 1b. The electrospinning jets by this
device can be caught by a high-speed camera, which is
shown in Fig. 1c. For the further examinations of the in
situ electrospun fibrous meshes, we also in situ electro-
spun these fibers onto an aluminum foil collector with
distance of 8 cm. The collected meshes were uncovered
from the aluminum foil for further characterization.

Characterization
The morphology and energy dispersive system (EDS) of
the as-spun fibers were examined by a scanning electron

microscope (SEM, Phenom ProX, Phenom Scientific
Instruments Co., Ltd., China) at 10 kV, and all samples
were coated with gold for 30 s before analysis. The
Fourier transform infrared spectroscopy (FTIR) spec-
trums were measured by a Thermo Scientific Nicolet
iN10 spectrometer. The simulated body fluid (SBF) con-
tact angle was examined by a Contact Angle Analyzer
(JY-PHb, China) with a 2-μL SBF droplet. Based on
ASTM D 737 standard, the air permeability under a
pressure drop of 200 Pa was tested by an air permeabil-
ity tester (Textest FX3300). Pore sizes of the as-spun
fibrous meshes were examined by PSM 165 (Germany,
Topas GmbH, PSM 165) at pressure of 200 Pa. The anti-
bacterial properties of the as-spun meshes were investi-
gated against Escherichia coli (E. coli, ATCC 10536) and
Staphylococcus aureus (S. aureus, ATCC 25923) bacteria.
Bacterial cells of E. coli (ATCC 10536) and S. aureus
(ATCC 25923) were grown for 24 h on a shaker at 37 °C
and 100 rpm.

Results and Discussion
Morphologies of Electrospun Fibers
By the HHE-1 apparatus as shown in Fig. 1, the prepared
PVP/I, PVP/PVPI, and PVB/PVPI solutions can be elec-
trospun into fibers conveniently. The morphologies of
the as-fibers could be found from the SEM images
shown in Fig. 2. From the SEM images, one can

Table 1 The average diameter of PVP/I, PVP/PVPI, and PVB/PVPI
fibers with different doping concentrations of iodine and PVPI,
with unit of nanometer

Materials 0% 1% 2% 5%

PVP-I 857 ± 14 852 ± 259 724 ± 132 511 ± 134

PVP-PVPI 857 ± 14 948 ± 89 1092 ± 216 1445 ± 351

PVB-PVPI 523 ± 81 849 ± 194 1231 ± 332 1485 ± 242

Fig. 3 Different elements of EDS images of the as-spun PVP/I (a–a3), PVP/PVPI (b–b3), PVB/PVPI (c–c3) fibers with 5% I/PVPI doping

Liu et al. Nanoscale Research Letters  (2018) 13:309 Page 3 of 7



obviously find that the electrospun fibers displayed
smooth surfaces, while the diameters of the as-spun fi-
bers showed different distributions because of the differ-
ent materials and concentrations. Combining SEM
images and the data in Table 1 comprehensively, it is
shown that for PVP/I fibers, as the concentration of iod-
ine increasing, the average diameter of the as-spun fibers
decreased obviously, which may due to the higher con-
ductivity of the solutions as iodine is added [36]. While
for PVP/PVPI and PVB/PVPI, the average diameters of
the as-spun fibers were both increased with higher con-
centration of PVPI, which may result from the increas-
ing of viscosities of the mixed solutions [37].

EDS and FTIR
To achieve the antibacterial properties and then benefit
the wound healing application, iodine played the crucial
role in the electrospun fibers. To verify the existence of
iodine, EDS was examined in the model of full spectrum
analysis. As displayed in Fig. 3, we chose the as-spun fi-
bers with higher concentrations of I/PVPI, 5%, for ex-
ample, and the images showed that in each kind of
electrospun fibers, except for the mainly carbon (Fig. 3
(a1), (b1), and (c1)) and oxygen (Fig. 3 (a2), (b2), and
(c2)) elements in the polymers, extra iodine element was
also observed (Fig. 3 (a3), (b3), and (c3)). Moreover, the
iodine added into the PVP solutions directly showed a
high concentration of iodine other than PVPI added.
Although the iodine could be found in the EDS im-
ages, one can obviously find from Fig. 3 that the con-
tent of iodine is small compared with other elements.
The same conclusion can be obtained from the FTIR
spectra in Fig. 4.
Fig. 4a–c showed the FTIR spectra of the as-spun fi-

bers with different concentration of different additions.

As can be seen from Fig. 4, the additions of iodine or
PVPI do not change the chemical structures of the poly-
mers obviously, which may due to the small quantity of
the additions. The unchanged polymers also ensured the
stability of the polymers for wound healing, without any
other uncertainties.

Wettability
Furthermore, it was believed that an ideal wound dress-
ing should include some advantages such as mainten-
ance of wound hydration and absorption of excess
wound exudate, which may require the wettability of the
designed wound dressing [5, 7–9]. Consequently, we also
examined the hydrophilicity of the as-spun fibrous
meshes by measuring their SBF contact angles. As sug-
gested in Fig. 5, the three kinds of electrospun fibrous
membranes all exhibited good hydrophilicity with the

Fig. 5 SBF contact examination of the as-spun fibers PVP/I (a–a3), PVP/PVPI (b–b3), PVB/PVPI (c–c3) with different iodine/PVPI concentrations

Fig. 4 FTIR spectra of the as-spun fibers PVP/I (a), PVP/PVPI (b),
PVB/PVPI (c)

Liu et al. Nanoscale Research Letters  (2018) 13:309 Page 4 of 7



increasing concentration of iodine and PVPI. For
PVP-based meshes, due to the hydrophilicity of the poly-
mer, the electrospun fibrous meshes also established
small SBF contact angles, and the angle increased to
19.5° for PVP/I, as shown in Fig. 5 (a–a3) and (b–b3).
The increased SBF contact angles may result from the
increasing surface roughness of these meshes. However,
the case in PVB-based meshes was different. In our pre-
vious study, it had been pointed out that electrospun
PVB fibrous meshes showed hydrophobicity due to its
unequal structures [38]. In the absence of PVPI, the
PVB electrospun meshes showed the similar contact
angle case as can be seen in Fig. 5(c). As PVPI is doped
in PVB, the SBF contact angle decreased and rapidly to
zero with PVPI higher than 2%, which indicated that
PVPI increased the hydrophilicity of the as-spun fibrous
meshes. The good hydrophilicity of these fibrous meshes
ensured the ability of absorption of excess wound exud-
ate and then would be beneficial for wound dressing
applications.

Air Permeability
An ideal wound dressing also requires good air perme-
ability to provide a positive environment for wound
healing [9, 11–13]. Here, we also investigated the air per-
meability of these kinds of iodine-doped fibrous meshes,
as shown in Table 2. As can be found in Table 2, with
the increasing doping of iodine in PVP, the air

permeability was also increased from 59.92 to
324.3 mm s−1, which may result from the decreased
diameter and increased porosity, while the air permeabil-
ity of fibrous meshes with PVPI doped in PVP and PVB
does not show obviously trends. Nevertheless, the 5%
doping ones show better gas permeability than the pure
polymers. For comparison, we also tested the air perme-
ability of two traditional wound dressings (TWD)
bought from the market. It is clear that the designed
electrospun fibrous wound dressings establish better air
permeability than the ones on the market.
For further examination of the air permeability, we

tested the pore size and pore distribution of the as-spun
meshes. As shown in Table 3, the average pore sizes of
the as-spun meshes were listed. Generally, the bigger the
average pore size, the better air permeability, compared
with the data in Table 2. Moreover, the pore sizes of the
as-spun fibrous meshes were mainly uniform, with the
largest portion at the mean sizes, which can be found in
Additional file 1: Figure S1. The pore sizes of these elec-
trospun meshes were in the region of 1.936–9.152 μm,
matching the human tissue cells sizes, which would be
beneficial for wound healing. However, due to the in-
strument precision, the pore sizes of the TWD were too
small to be tested, which may result in the poor air per-
meability of them.

Antibacterial Activity
Another requirement for ideal wound dressing is asepsis
and even antibiosis to prevent and treat wound infec-
tions [11–13]. In this work, the iodine and PVPI doping

Fig. 6 The antibacterial activity of the as-spun membranes against E. coli and S. aureus

Table 3 Average pore sizes of the electrospun fibrous mats,
with unit of micrometer

Materials 0% 1% 2% 5%

PVP/I 2.357 ± 0.395 2.831 ± 0.634 4.353 ± 1.211 9.152 ± 2.274

PVP/PVPI 2.357 ± 0.395 5.996 ± 2.306 5.185 ± 0.904 4.274 ± 1.174

PVB/PVPI 3.732 ± 0.964 1.936 ± 0.518 3.792 ± 1.366 4.786 ± 1.192

Table 2 Air permeability of the electrospun fibrous mats and
two kinds of TWD (traditional wound dressing), with unit of
mm s−1

Materials 0% 1% 2% 5%

PVP/I 59.92 ± 8.51 68.3 ± 12.87 95.68 ± 4.83 324.3 ± 31.74

PVP/PVPI 59.92 ± 8.51 143 ± 16.83 89.93 ± 7.12 73.19 ± 2.64

PVB/PVPI 44.99 ± 5.54 21.66 ± 2.60 72.08 ± 7.75 74.16 ± 7.41

TWD 1 8.45 ± 1.56 – –

TWD 2 17.82 ± 2.12 – –
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are rightly to achieve that. The antibacterial activities of
the as-spun fibrous meshes were assessed against typical
pathogenic bacteria, such as E. coli and S. aureus, as dis-
played in Fig. 6. From Fig. 6, one can find that no bac-
teriostatic circle was formed for pure PVP or PVB. Once
iodine or PVPI was doped in the polymer, the as-spun fi-
brous membranes showed obvious inhibition zones for
the two bacterial strains after 24 h intervals. Moreover,
the iodine-doped PVP showed the best antibacterial
properties against both E. coli and S. aureus, the
PVPI-doped PVP taking the second place and PVB/PVPI
last. The good antibacterial properties ensured that the
iodine-based electrospun fibrous meshes could be used
for wound healing against bacterial infections of the
wound. Moreover, it can be expected that the higher the
concentration of the additional antibacterials, the better
the antibacterial properties of the meshes. Consequently,
one can easily get better antibacterial properties by add-
ing more iodine or PVPI in their solutions.

In Situ Applications
It is believed that in situ wound dressing will benefit
their efficiency due to additional superiority such as con-
formability without wrinkling or fluting in the wound
bed, ease of application, and improved patient compli-
ance and comfort [39]. Consequently, in situ electrospin-
ning is considered as a useful concept to produce
appropriate substitutes for tissue repairing and wound
healing directly on the patient’s lesion independently of
wound size and depth [18, 34, 35, 40, 41]. As shown in
Fig. 7a, b, the iodine-based fibrous meshes can be in situ
electrospun onto the “injured hand” by the HHE-1 de-
vice and form a thin film on the surface of the skin
like a second layer of skin due to electrostatic attrac-
tion forces. The electrospun PVP-I fibrous membrane
shows good flexibility and compactness and can be
easily removed if needed [see Fig. 7c, d). The more

vivid details of in situ electrospinning of PVP-I wound
dressing can be found in Additional file 1: Video S1
and S2 and Figure S2.

Conclusions
In summary, we have in situ electrospun PVP/I, PVP/
PVPI, and PVB/PVPI into fibrous membranes by a
hand-held electrospinning apparatus. These electrospun
meshes show uniform diameters and better hydrobilicity
with doping of iodine or PVPI. Moreover, the good air
permeability of blend PVP/I, PVP/PVPI, and PVB/PVPI
electrospun meshes ensures their application in wound
dressing. The increased concentrations of iodine and its
complex favor the antibacterial properties of these
meshes and then improve the effects as wound dressing.
Furthermore, the in situ electrospinning also benefits
the electrospinning process and the as-spun fibrous
meshes for wound healing.

Additional File

Additional file 1: Figure. S1. Pore size distribution of the as-spun PVP/I
(a-a3), PVP/PVPI (b-b3) and PVB/PVPI(c-c3) fibrous mats with concentra-
tion of I/PVPI 0%, 1%, 2% and 5%, respectively. Figure S2. Electrospun
PVP-I meshes onto human injured finger, can stem the bleeding quickly,
and then heal the wound well. Figure S3. In situ electrospun PVP/I
meshes onto human hand and finger, the as-spun meshes showed good
conformability on the finger. (ZIP 24007 kb)
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